Table 3. Main interatomic distances (\AA) and bond angles $\left(^{\circ}\right)$ in $\mathrm{HPO}_{4}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}$
PO_{4} tetrahedron

P^{2}	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$
$\mathrm{O}(1)$	$\frac{1.590(2)}{}$	$2.459(3)$	$2.540(3)$	$2.523(3)$
$\mathrm{O}(2)$	$104.3(1)$	$\frac{1.525(2)}{}$	$2.532(3)$	$2.535(3)$
$\mathrm{O}(3)$	$108.8(1)$	$\frac{111.8(1)}{115}$	$1.533(2)$	$2.512(3)$
$\mathrm{O}(4)$	$108.4(1)$	$112.7(1)$	$110.7(1)$	$1.521(2)$

$\overline{\mathrm{P}-\mathrm{O}}=1.542$ (2)
$\mathrm{NH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}$ group

$\mathrm{N}(1)-\mathrm{C}(1)$	$1.469(4)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(112.1$ (3)		
$\mathrm{C}(2)-\mathrm{C}(2)$	$1.507(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$
$\mathrm{N}(209.6(2)$		

Hydrogen bonds

	$(\mathrm{O}, \mathrm{N})-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$(\mathrm{O}, \mathrm{N})-\mathrm{O}$	$\angle(\mathrm{O}, \mathrm{N})-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(4)$	$0.71(6)$	$1.90(6)$	$2.578(3)$	$160(7)$
$\mathrm{N}(1)-\mathrm{H}(\mathrm{N} 1) \cdots \mathrm{O}(4)$	$0.82(4)$	$1.93(4)$	$2.747(4)$	$173(4)$
$\mathrm{N}(1)-\mathrm{H}(2 \mathrm{~N} 1) \cdots \mathrm{O}(2)$	$0.88(5)$	$1.85(5)$	$2.719(4)$	$167(5)$
$\mathrm{N}(1)-\mathrm{H}(3 \mathrm{~N} 1) \cdots \mathrm{O}(3)$	$0.91(4)$	$2.00(5)$	$2.906(4)$	$176(4)$
$\mathrm{N}(2)-\mathrm{H}(1 \mathrm{~N} 2) \cdots \mathrm{O}(3)$	$0.90(4)$	$1.91(5)$	$2.810(4)$	$178(4)$
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N} 2) \cdots \mathrm{O}(2)$	$1.08(5)$	$1.65(5)$	$2.720(4)$	$176(4)$
$\mathrm{N}(2)-\mathrm{H}(3 \mathrm{~N} 2) \cdots \mathrm{O}(3)$	$0.94(5)$	$1.90(5)$	$2.836(4)$	$172(4)$

groups. In both structures one observes a layer arrangement: planes of HXO_{4} tetrahedra alternate with planes of $\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}^{2+}$ groups, as depicted in Figs. 1 and 2.

Another common feature for these two arrangements is the internal repartition of the $\mathrm{HXO}{ }_{4}^{2-}$ tetrahedra in their planes; they are associated in pairs forming $\mathrm{H}_{2} \mathrm{X}_{2} \mathrm{O}_{8}$ clusters with rather short $X-X$ distances ($\mathrm{P}-\mathrm{P}=4.847$, As-As $=4.994 \AA$). The two HXO groups in such a cluster are linked by a double hydrogen bridge.

In the case of the phosphorus compound the $\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}$ entities are strongly pseudocentrosymmetric while they are centrosymmetric in the arsenic compound. This implies the existence of two crystallographically independent $\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}$ units.

Table 4. Main interatomic distances (\AA) and bond angles $\left(^{\circ}\right)$ in $\mathrm{HAsO}_{4}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}$
AsO_{4} tetrahedron

As	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$
$\mathrm{O}(1)$	$\frac{1.678(3)}{}$	$2.647(4)$	$2.775(4)$	$2.751(4)$
$\mathrm{O}(2)$	$\overline{101.7(2)}$	$\underline{1.734(3)}$	$2.793(5)$	$2.763(5)$
$\mathrm{O}(3)$	$111.9(2)$	$110.2(2)$	$1.672(3)$	$2.763(5)$
$\mathrm{O}(4)$	$111.1(2)$	$109.1(2)$	$112.2(2)$	$1.657(3)$

$\mathrm{NH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}$ groups

$\mathrm{C}(1)-\mathrm{C}(1)$	$1.496(8)$	$\mathrm{C}(2)-\mathrm{C}(2)$	$1.516(9)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.479(5)$	$\mathrm{C}(2)-\mathrm{N}(2)$	$1.482(6)$

$\mathrm{C}(1)-\mathrm{N}(1) \quad 1.479$ (5) $\mathrm{C}(2)-\mathrm{N}(2) \quad 1.482$ (6)
$\mathrm{C}(1)-\mathrm{C}(1)-\mathrm{N}(1) \quad 111.3(4) \mathrm{C}(2)-\mathrm{C}(2)-\mathrm{N}(2) \quad 110 \cdot 6(5)$
Hydrogen bonds
$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(3)$

$(\mathrm{O}, \mathrm{N})-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$(\mathrm{O}, \mathrm{N})-\mathrm{O}$	$\angle(\mathrm{O}, \mathrm{N})-\mathrm{H} \cdots \mathrm{O}$
$0.64(6)$	$2.03(6)$	$2.634(5)$	$158(8)$
$0.64(6)$	$2.14(6)$	$2.744(5)$	$157(7)$
$0.82(6)$	$1.99(6)$	$2.805(5)$	$170(5)$
$0.88(5)$	$1.92(5)$	$2.788(5)$	$168(5)$
$0.76(8)$	$1.98(8)$	$2.718(5)$	$162(8)$
$0.77(5)$	$2.14(6)$	$2.820(5)$	$148(5)$
$0.88(6)$	$1.81(6)$	$2.686(5)$	$170(5)$

Tables 1 and 2^{*} report the final atomic coordinates, while Tables 3 and 4 give the main interatomic distances, bond angles and details of the hydrogen-bond scheme.

[^0]
References

Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Structure of Disodium Ethylenediammonium Bis[monohydrogentetraoxophosphate(V)] Hexahydrate

By M. T. Averbuch-Роuchot, A. Durif and J. C. Guitel
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USTMG, 166X, 38042 Grenoble CEDEX, France
(Received 18 March 1987; accepted 22 May 1987)

Abstract. $\quad \mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} .2 \mathrm{Na}^{+} .2 \mathrm{HPO}_{4}^{2-} .6 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=$
$408.15, \quad$ monoclinic $, \quad P 2 / c, \quad a=11.699(9), \quad b=$ $10 \cdot 164$ (9),$\quad c=6.835$ (4) $\AA, \quad \beta=105.00(5)^{\circ}, \quad V=$ 785 (2) $\AA^{3}, Z=2, \quad D_{x}=1.727 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=$ 0108-2701/87/101896-03\$01.50
$0.7107 \AA, \mu=0.415 \mathrm{~mm}^{-1}, F(000)=428, T=295 \mathrm{~K}$, final $R=0.022$ for 1823 independent reflexions. HPO_{4}^{2-} and $\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}^{2+}$ groups alternate in planes perpendicular to the a axis. In these planes, HPO_{4}^{2-} © 1987 International Union of Crystallography
groups link together to form $\left(\mathrm{P}_{2} \mathrm{O}_{8} \mathrm{H}_{2}\right)^{4-}$ clusters with an internal $\mathrm{P}-\mathrm{P}$ distance of $4.320 \AA$. Na atoms and water molecules are located between these planes, separated by a distance of $11.7 \AA$. Sodium coordination is a distorted octahedron made of five water molecules and one O atom. The potassium salt is isotypic with the title compound.

Introduction. During an investigation of the interaction of ethylenediamine with various acidic monophosphates, we generally observed the formation of $\left[\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+} .\left[\mathrm{HPO}_{4}\right]^{2-}$, a very stable compound (Averbuch-Pouchot \& Durif, 1987). In some cases, the formation of more complex compounds was observed. The title compound is an example of such a compound, characterized during the investigation of the ethylene-diamine- $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ system.

Experimental. Crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of the two components in a proper ratio. Schematically the reaction can be written:

$$
2 \mathrm{NaH}_{2} \mathrm{PO}_{4}+\underset{\mathrm{Na}_{2}\left[\mathrm{NH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}\right]\left[\mathrm{NPO}_{4}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .}{ }
$$

If an excess of ethylenediamine is slowly added to the solution precipitation occurs immediately. The polycrystalline precipitate so obtained is then purified by recrystallization in water. The process for the preparation of the isotypic potassium salt is identical.

Density not measured. Monoclinic stout prism: $0.32 \times 0.32 \times 0.24 \mathrm{~mm}$. Nonius CAD-4 diffractometer. Graphite monochromator. Systematic absences: $0 k 0, k=2 n ; h 0 l, l=2 n$. 24 reflexions ($11.5<$ $\theta<16 \cdot 20^{\circ}$) for refining unit-cell dimensions. ω scan. 2586 reflexions measured $\left(3<\theta<30^{\circ}\right), \pm h k l, h_{\text {max }}$ $=15, k_{\text {max }}=14, l_{\text {max }}=9$. Scan width $1 \cdot 20^{\circ}$, scan speed $0.02-0.04^{\circ} \mathrm{s}^{-1}$, background measuring time $15-30 \mathrm{~s}$. Two orientation (441 and $\overline{4} \overline{4} \overline{1}$) and two intensity (620 and $44 \overline{1})$ reference reflexions: no significant variations. Lorentz and polarization corrections, no absorption correction.

Crystal structure solved by direct methods with MULTAN (Main, Woolfson \& Germain, 1971); anisotropic full-matrix least-squares refinement (on F) for non-H atoms, isotropic for H atoms. Unit weights. Final refinement with 1823 reflexions ($F>2 \sigma_{F}$). Final $R=0.022$ ($w R=0.024$). Extinction coefficient refined: 6.43×10^{-6} (Stout \& Jensen, 1968). $S=0.416$. Max. $\Delta / \sigma=0.29$ (extinction coefficient). Max. peak height in final differerence Fourier synthesis 0.260 e \AA^{-3}. The final R value $=0.033$ for the complete set of independent reflexions (2268 reflexions). H atoms located by difference Fourier map and refined isotropically. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974).

Enraf-Nonius (1977) $S D P$ employed for all calculations. Computer used: VAX 780.

Discussion. Table 1^{*} reports the final atomic coordinates. Fig. 1 is a projection of the atomic arrangement along the c axis.

* Lists of structure factors, anisotropic thermal parameters and
bond distances and angles involving H atoms have been deposited
with the British Library Document Supply Centre as Supplemen-
tary Publication No. SUP 44093 (17 pp.). Copies may be obtained
through The Executive Secretary, International Union of Crystal-
lography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final atomic coordinates and $B_{\text {eq }}$ or $B_{\text {iso }}$ for $\left.\mathrm{Na}_{2} \mid\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{HPO}_{4}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

	x	y	z	$B_{\text {eq }} / B_{\text {iso }}\left(\AA^{2}\right)$
Na	0.59327 (5)	$0 \cdot 13069$ (5)	0.10285 (8)	2.23 (1)
P	$0 \cdot 19048$ (3)	0.01690 (3)	$0 \cdot 09303$ (5)	1.486 (5)
$\mathrm{O}(1)$	$0 \cdot 27422$ (8)	0.0182 (1)	0.3038 (1)	$2 \cdot 14$ (2)
$\mathrm{O}(2)$	$0 \cdot 12632$ (8)	$0 \cdot 87853$ (9)	$0 \cdot 0688$ (2)	2.54 (2)
$\mathrm{O}(3)$	0.09597 (8)	$0 \cdot 12196$ (9)	0.0723 (2)	$2 \cdot 42$ (2)
$\mathrm{O}(4)$	0.25655 (8)	0.4721 (1)	0.4311 (1)	$2 \cdot 11$ (2)
$\mathrm{O}(W 1)$	0.49542 (8)	0.9641 (1)	0.2335 (2)	2.51 (2)
$\mathrm{O}(W 2)$	$0 \cdot 31084$ (8)	0.80010 (9)	$0 \cdot 5560$ (2)	2.30 (2)
O (W3)	0.6006 (1)	0.7512 (1)	0.4911 (2)	3.01 (2)
N	$0 \cdot 12995$ (9)	0.3850 (1)	0.0602 (2)	1.79 (2)
C	0.0048 (1)	0.4260 (1)	0.0063 (2)	1.88 (2)
H	0.054 (1)	0.883 (2)	0.019 (3)	$3 \cdot 6$ (4)
$\mathbf{H}(1 W 1)$	0.565 (2)	0.022 (2)	0.728 (3)	$4 \cdot 1$ (4)
$\mathbf{H}(2 W 1)$	0.469 (2)	0.412 (2)	0.195 (3)	4.7 (5)
$\mathrm{H}(1 W 2)$	0.752 (1)	0.236 (2)	0.462 (2)	$2 \cdot 9$ (4)
$\mathrm{H}(2 W 2)$	0.707 (2)	0.363 (2)	0.025 (3)	$3 \cdot 8$ (4)
H(1W3)	0.648 (2)	$0 \cdot 810$ (2)	$0 \cdot 012$ (3)	3.7 (4)
H(2W3)	0.370 (2)	0.301 (2)	0.919 (3)	$5 \cdot 7$ (5)
H(1N)	0.831 (1)	0.916 (2)	0.317 (3)	3.0 (4)
H(2N)	0.829 (1)	0.914 (2)	0.528 (3)	$3 \cdot 2$ (4)
$\mathrm{H}(3 \mathrm{~N})$	0.130 (1)	$0 \cdot 302$ (2)	0.066 (2)	$3 \cdot 3$ (4)
H(1C)	0.033 (1)	$0 \cdot 616$ (2)	$0 \cdot 122$ (2)	$2 \cdot 2$ (3)
H(2C)	$0 \cdot 028$ (1)	0.609 (2)	0.893 (2)	$2 \cdot 6$ (3)

Fig. 1. Projection along the c axis of the atomic arrangement of $\mathrm{Na}_{2}\left[\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{HPO}_{4}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Two $\mathrm{O}(W 3)$ water molecules are superimposed in projection.

Table 2. Main interatomic distances (\AA), bond angles $\left({ }^{\circ}\right)$ and hydrogen-bond scheme $\left(\AA,{ }^{\circ}\right)$ in $\mathrm{Na}_{2}\left[\left(\mathrm{CH}_{2}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{HPO}_{4}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
PO_{4} tetrahedron

P	O(1)	O(2)	O(3)	O(4)
O(1)	1.518 (1)	2.480 (2)	2.501 (2)	2.504 (2)
$\mathrm{O}(2)$	$\overline{106.21(9)}$	1.583 (1)	2.501 (2)	2.501 (2)
$\mathrm{O}(3)$	110.96 (9)	107.53 (8)	1.517 (1)	2.513 (2)
O(4)	111.61 (8)	107.95 (9)	112.25 (9)	1.509 (1)

NaO_{6} octahedron

$\mathrm{Na}-\mathrm{O}(4)$	$2.439(2)$	$\mathrm{Na}-\mathrm{O}(W 2)$	$2.416(2)$
$\mathrm{Na}-\mathrm{O}(W 1)$	$2.346(2)$	$\mathrm{Na}-\mathrm{O}(W 2)$	$2.456(2)$
$\mathrm{Na}-\mathrm{O}(W 1)$	$2.461(2)$	$\mathrm{Na}-\mathrm{O}(W 3)$	$2.511(2)$
$\mathrm{NH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}$ group			
$\mathrm{N}-\mathrm{C}$	$1.475(3)$	$\mathrm{N}-\mathrm{C}-\mathrm{C}$	$110.5(2)$
$\mathrm{C}-\mathrm{C}$	$1.509(4)$		

Hydrogen bonds

	$\mathrm{O} \cdots \mathrm{H}$		$\mathrm{O}-\mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
	$\mathrm{N}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{N}-\mathrm{O}$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(3)$	$0.82(3)$	$1.71(3)$	$2.529(2)$	$174(3)$
$\mathrm{N}-\mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{O}(4)$	$0.90(3)$	$1.83(2)$	$2.732(2)$	$176(3)$
$\mathrm{N}-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(1)$	$0.91(3)$	$2.00(3)$	$2.901(2)$	$174(3)$
$\mathrm{N}-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{O}(3)$	$0.85(3)$	$1.87(3)$	$2.707(2)$	$168(3)$
$\mathrm{O}(W 1)-\mathrm{H}(1 W 1) \cdots \mathrm{O}(1)$	$0.83(3)$	$1.99(3)$	$2.806(2)$	$168(3)$
$\mathrm{O}(W 1)-\mathrm{H}(2 W 1) \cdots \mathrm{O}(W 3) 0.77(4)$	$2.10(4)$	$2.859(2)$	$170(4)$	
$\mathrm{O}(W 2)-\mathrm{H}(1 W 2) \cdots \mathrm{O}(2)$	$0.80(3)$	$2.08(3)$	$2.839(2)$	$158(3)$
$\mathrm{O}(W 2)-\mathrm{H}(2 W 2) \cdots \mathrm{O}(1)$	$0.84(3)$	$1.94(3)$	$2.773(2)$	$172(3)$
$\mathrm{O}(W 3)-\mathrm{H}(1 W 3) \cdots \mathrm{O}(4)$	$0.82(3)$	$1.97(3)$	$2.787(2)$	$172(3)$
$\mathrm{O}(W 3)-\mathrm{H}(2 W 3) \cdots \mathrm{O}(1)$	$0.80(4)$	$2.20(4)$	$2.922(2)$	$152(4)$
$\mathrm{H}(1 W 1)-\mathrm{O}(W 1)-\mathrm{H}(2 W 1)$	$107(3)$	$\mathrm{H}(1 W 3)-\mathrm{O}(W 3)-\mathrm{H}(2 W 3)$	$102(3)$	
$\mathrm{H}(1 W 2)-\mathrm{O}(W 2)-\mathrm{H}(2 W 2)$	$101(3)$			

The HPO_{4} and organic groups alternate in planes perpendicular to the a axis. The HPO_{4} groups are associated in pairs forming centrosymmetric finite clusters $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\right]^{4-}$, the two tetrahedra being linked by hydrogen bonds, not drawn in Fig. 1 but reported in Table 2. In such a group the $\mathrm{P}-\mathrm{P}$ distance is relatively short ($4 \cdot 320 \AA$). In these same planes ethylenediamine is present as the z witterion, $\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}^{2+}$. This group is centrosymmetrical.
Between these planes and separated by a distance of $11.70 \AA$ are located the Na atoms and the six water molecules. Na atoms have a sixfold coordination formed by five water molecules and one O atom.

Main interatomic distances, bond angles and hydrogen bonds are reported in Table 2. The potassium salt is isotypic with the following unit-cell dimensions: a $=11.77, b=10.62, c=6.93 \AA, \beta=102.68^{\circ}$.

References

Averbuch-Pouchot, M. T. \& Durif, A. (1987). Acta Cryst. C43, 1894-1896.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Woolfson, M. M. \& Germain, G. (1971). MUltan. A Computer Program for the Automatic Solution of Crystal Structures. Univ. of York, England.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1987). C43, 1898-1900

Monopotassium Phosphoenolpyruvate: New Diffractometer Data

By T. Lis
Instytut Chemii, Uniwersytet, 50-383 Wroctaw, Poland

(Received 21 April 1987; accepted 28 May 1987)

Abstract. Potassium 2-(phosphonooxy)propenoate, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{P}^{-} . \mathrm{K}^{+}, M_{r}=206 \cdot 14$, orthorhombic, Pbca, a $=14.534$ (8), $b=13.863$ (6), $c=6.883$ (3) $\AA, V=$ $1387 \AA^{3}, \quad Z=8, \quad D_{m}=1.96, \quad D_{x}=1.97 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=0.97 \mathrm{~mm}^{-1}, F(000)=832$, $T=294$ (2) K, final $R=0.042$ for 1821 non-zero reflexions. The value of b differs significantly from that reported by Hosur \& Viswamitra [Acta Cryst. (1981), B37, 839-843]. The length of the $\mathrm{P}-\mathrm{O}$ (ester) bond is 1.622 (2) \AA, the $\mathrm{P}-\mathrm{O}(\mathrm{H})$ bond is 1.545 (2) \AA.

Introduction. During statistical analysis of the geometry of the monophosphate group in organic esters (Starynowicz \& Lis, 1985; Starynowicz, Lis \&

Weichsel, 1986; Starynowicz, 1986) it was found that in monopotassium phosphoenolpyruvate (Hosur \& Viswamitra, 1981) the $\mathrm{P}-\mathrm{O}(\mathrm{H})$ distance does not differ from other $\mathrm{P}-\mathrm{O}$ (terminal) distances. Since this is unexpected it was decided to reinvestigate this structure.

Experimental. Crystals of monopotassium phosphoenolpyruvate were obtained from an aqueous solution at room temperature of the commercially available compound (Boehringer). An almost parallelepipedal fragment $0.2 \times 0.5 \times 0.4 \mathrm{~mm}$ was cut from a large crystal; preliminary examination by rotation and Weissenberg photographs. Syntex $P 2_{1}$ diffractometer © 1987 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44090 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

